

R	eg.	No.	*	***		 **	**	 	**		 	 **	**
N	ame	e :											

I Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination,
October 2021
(2018 Admission Onwards)
MATHEMATICS
MAT1C02: Linear Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this part. Each question carries 4 marks.

- 1. Let T be a linear operator on R^3 defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3)$ What is the matrix of T in the standard ordered basis for R^4 .
- 2. Let V be a finite dimensional vector space over the field F and let W be a subspace of V. Then prove that dim W + dim W^0 = dim V.
- 3. Find a 3 \times 3 matrix for which the minimal polynomial is x^2 .
- 4. Let W be an invariant subspace for T. The characteristic polynomial for the restriction operator T_W divides the characteristic polynomial for T. Then prove that the minimal polynomial for T_W divides the minimal polynomial for T.
- 5. Let T be the linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. Prove that T has no cyclic vector.
- 6. Apply the Gram-Schmidt process to the vectors β_1 = (3, 0, 4), β_2 = (-1, 0, 7), β_3 = (2, 9, 11), to obtain an orthonormal basis for R³ with standard inner product.

P.T.O.

PART - B

Answer 4 questions from this part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Let T be a linear transformation from V into W. Then prove that T is nonsingular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.
 - b) If S is any subset of a finite dimensional vector space V, then prove that (S°)° is a subspace spanned by S.
- 8. a) Let V be a finite-dimensional vector space over the field F and let $\{\alpha_1,\ldots,\alpha_n\}$ be an ordered basis for V. Let W be a vector space over the same field F and let β_1, \dots, β_n be any vectors in W. Then prove that there is precisely one linear transformation T from V into W such that T $\alpha_i = \beta_i$, j = 1, ..., n.
 - b) If A is an m x n matrix with entries in the field F, then prove that row rank(A) = column rank(A).
- 9. a) Let V be an n-dimensional vector space over the field F and let W be an m-dimensional vector space over F. Then prove that the space L(V, W) is finite-dimensional and has dimension mn.
 - b) Let B = $\{\alpha_1, \alpha_2, \alpha_3\}$ be the basis for C³ defined by $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1),$ $\alpha_3 = (2, 2, 0)$. Find the dual basis of B.

Unit - II

- 10. a) Let T be a linear operator on a finite-dimensional space V. Let c1, ..., ck be the distinct characteristic values of T and let W, be the null space of (T - c.I). Then prove that following are equivalent.
 - i) T is diagonalizable.
 - ii) The characteristic polynomial for T is $f = (x c_1)^{d_1} \dots (x c_k)^{d_k}$ and $\dim W_i = d_i, i = 1, \ldots, k.$
 - iii) $\dim W_1 + \dots + \dim W_k = \dim V$.
 - b) Prove that similar matrices have the same characteristic polynomial.

- 11. a) State and prove Cayley Hamilton Theorem.
 - b) Let T be the linear operator on R², the matrix of which in the standard ordered basis is $\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$. Prove that the only subspaces of \mathbb{R}^2 invariant under T are R² and the zero subspace.
- 12. a) Let F be a commuting family of diagonalizable linear operators on the finitedimensional vector space V. Prove that there exists an ordered basis for V such that every operator in F is represented in that basis by a diagonal matrix.
 - b) Find a projection E which projects R^2 onto the subspace spanned by (1, -1)along the subspace spanned by (1, 2).

Unit - III

- 13. a) State and prove primary decomposition theorem.
 - b) If V is the space of all polynomials of degree less than or equal to n over a field F, prove that the differentiation operator on V is nil potent.
- 14. a) Let F be a field and let B be an n x n matrix over F. Then prove that B is similar over the field F to one and only one matrix which is in rational form.
 - b) Let T be the linear operator on R3 which is represented in the standard ordered basis by the matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Prove that T has no cyclic vector.

What is the T-cyclic subspace generated by the vector (1, -1, 3)?

- c) Verify that the standard inner product on Fⁿ is an inner product.
- 15. a) Let V be an inner product space and let $(\beta_1, \ldots, \beta_n)$, be any independent vectors in V. Then construct orthogonal vectors $\alpha_1, \ldots, \alpha_n$ in V such that for each k = 1, 2, . . ., n the set $\{\alpha_1, \ldots, \alpha_k\}$ is a basis for the subspace spanned by β_1, \ldots, β_k .
 - b) Let V be a real or complex vector space with an inner product. Show that the quadratic form determined by the inner product satisfies the parallelogram law $||\alpha + \beta||^2 + ||\alpha - \beta||^2 = 2||\alpha||^2 + 2||\beta||^2$.